Independence of points on elliptic curves coming from modular curves

Gregorio Baldi

XXI Congresso dell'unione Matematica Italiana, Sezione di Teoria dei Numeri

Pavia, 06/09/2019

G. Baldi

Independence of points

06/09/2019 1 / 17

• $X/\overline{\mathbb{Q}}$ a modular curve $X_0(N)$ (for some N > 3);

イロト イヨト イヨト イヨト

- $X/\overline{\mathbb{Q}}$ a modular curve $X_0(N)$ (for some N > 3);
- $x \in X(\overline{\mathbb{Q}})$ a non-cuspidal point $\rightsquigarrow (E_x, \Psi_x)$;

∃ >

- $X/\overline{\mathbb{Q}}$ a modular curve $X_0(N)$ (for some N > 3);
- $x \in X(\overline{\mathbb{Q}})$ a non-cuspidal point $\rightsquigarrow (E_x, \Psi_x)$;
- $E/\overline{\mathbb{Q}}$ an elliptic curve;

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $X/\overline{\mathbb{Q}}$ a modular curve $X_0(N)$ (for some N > 3);
- $x \in X(\overline{\mathbb{Q}})$ a non-cuspidal point $\rightsquigarrow (E_x, \Psi_x)$;
- $E/\overline{\mathbb{Q}}$ an elliptic curve;
- a (non-constant) $\overline{\mathbb{Q}}$ -morphism

 $\phi:X\to E.$

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let E/\mathbb{Q} be a (modular) elliptic curve

(日) (四) (三) (三) (三)

Let E/\mathbb{Q} be a (modular) elliptic curve If $L(E, 1) \neq 0 \Rightarrow |E(\mathbb{Q})| < \infty$;

Let E/\mathbb{Q} be a (modular) elliptic curve

- $If L(E,1) \neq 0 \Rightarrow |E(\mathbb{Q})| < \infty;$
- **2** If $(L(E, 1) = 0 \text{ and}) L'(E, 1) \neq 0 \Rightarrow E/\mathbb{Q}$ has algebraic rank one and there is an efficient method for calculating $E(\mathbb{Q})$.

Let E/\mathbb{Q} be a (modular) elliptic curve

- $If L(E,1) \neq 0 \Rightarrow |E(\mathbb{Q})| < \infty;$
- **2** If $(L(E, 1) = 0 \text{ and}) L'(E, 1) \neq 0 \Rightarrow E/\mathbb{Q}$ has algebraic rank one and there is an efficient method for calculating $E(\mathbb{Q})$.

In both cases the Tate-Shafarevich group of E/\mathbb{Q} is finite.

Let E/\mathbb{Q} be a (modular) elliptic curve

- $If L(E,1) \neq 0 \Rightarrow |E(\mathbb{Q})| < \infty;$
- **2** If $(L(E, 1) = 0 \text{ and}) L'(E, 1) \neq 0 \Rightarrow E/\mathbb{Q}$ has algebraic rank one and there is an efficient method for calculating $E(\mathbb{Q})$.

In both cases the Tate-Shafarevich group of E/\mathbb{Q} is finite.

The crux in (2) is to construct a non-torsion point in $E(\mathbb{Q})$. This is done constructing (special) points on X: it is easier to construct points on a moduli space such as X. Especially CM points...

Let K be a quadratic imaginary field with an ideal \mathfrak{n} of norm N.

(日) (同) (三) (三) (三)

Let K be a quadratic imaginary field with an ideal $\mathfrak n$ of norm N. Consider

$$\operatorname{Pic}(\mathcal{O}_K) \to X, [\mathfrak{a}] \mapsto P_{\mathfrak{a}} := [\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a}]$$

イロト イポト イヨト イヨト

Let K be a quadratic imaginary field with an ideal $\mathfrak n$ of norm N. Consider

$$\operatorname{Pic}(\mathcal{O}_K) \to X, [\mathfrak{a}] \mapsto P_{\mathfrak{a}} := [\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a}]$$

Summing these points in E, via $\phi:X\to E,$ we obtain a point $P_K\in E(K).$

Let K be a quadratic imaginary field with an ideal $\mathfrak n$ of norm N. Consider

$$\operatorname{Pic}(\mathcal{O}_K) \to X, [\mathfrak{a}] \mapsto P_{\mathfrak{a}} := [\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a}]$$

Summing these points in E, via $\phi: X \to E$, we obtain a point $P_K \in E(K)$. If $L'(E/K, 1) \neq 0$, P_K generates a finite-index subgroup of E(K) whose index is related to the cardinality of the Sha.

Let K be a quadratic imaginary field with an ideal $\mathfrak n$ of norm N. Consider

$$\operatorname{Pic}(\mathcal{O}_K) \to X, [\mathfrak{a}] \mapsto P_{\mathfrak{a}} := [\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a}]$$

Summing these points in E, via $\phi: X \to E$, we obtain a point $P_K \in E(K)$. If $L'(E/K, 1) \neq 0$, P_K generates a finite-index subgroup of E(K) whose index is related to the cardinality of the Sha. To deduce the result over \mathbb{Q} , one has to find a Dirichlet character ϵ such that

$$L(E/K,s) = L(E,s)L(E,\epsilon,s)$$
 and $L'(E,\epsilon,1) \neq 0 \dots$

イロト イポト イヨト イヨト

Let K be a quadratic imaginary field with an ideal $\mathfrak n$ of norm N. Consider

$$\operatorname{Pic}(\mathcal{O}_K) \to X, [\mathfrak{a}] \mapsto P_{\mathfrak{a}} := [\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{n}^{-1}\mathfrak{a}]$$

Summing these points in E, via $\phi: X \to E$, we obtain a point $P_K \in E(K)$. If $L'(E/K, 1) \neq 0$, P_K generates a finite-index subgroup of E(K) whose index is related to the cardinality of the Sha. To deduce the result over \mathbb{Q} , one has to find a Dirichlet character ϵ such that

$$L(E/K,s) = L(E,s)L(E,\epsilon,s)$$
 and $L'(E,\epsilon,1) \neq 0 \dots$

Theorem (Nekovar, Schappacher 1999)

There are only finitely many torsion $\phi(P_{\mathfrak{a}})$ on any elliptic curve E over \mathbb{Q} .

• We want to find *special* subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.

イロト イヨト イヨト イ

- We want to find special subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.
- Can we replace E_{tors} by bigger subgroups $\Gamma \subset E(\overline{\mathbb{Q}})$?

-

- We want to find *special* subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.
- Can we replace E_{tors} by bigger subgroups $\Gamma \subset E(\overline{\mathbb{Q}})$?
- Other *natural* choices of Γ are:
 - Finitely generated subgroups;

- We want to find *special* subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.
- Can we replace E_{tors} by bigger subgroups $\Gamma \subset E(\overline{\mathbb{Q}})$?
- Other *natural* choices of Γ are:
 - Finitely generated subgroups;
 - **2** Points of Neron-Tate height smaller than some fixed constant $\epsilon \geq 0$.

- We want to find *special* subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.
- Can we replace E_{tors} by bigger subgroups $\Gamma \subset E(\overline{\mathbb{Q}})$?

Other *natural* choices of Γ are:

Finitely generated subgroups;

2 Points of Neron-Tate height smaller than some fixed constant $\epsilon \geq 0$. All together: Let Γ be a finite rank subgroup of $E(\overline{\mathbb{Q}})$, and for every $\epsilon \geq 0$ define

$$\Gamma_{\epsilon} := \{ a + b | a \in \Gamma, \hat{h}(b) \le \epsilon \} \le E(\overline{\mathbb{Q}}).$$

- We want to find *special* subsets $\Sigma \subset X(\overline{\mathbb{Q}})$, such that $\phi(\Sigma) \cap E_{\text{tors}}$ is finite.
- Can we replace E_{tors} by bigger subgroups $\Gamma \subset E(\overline{\mathbb{Q}})$?

Other *natural* choices of Γ are:

Finitely generated subgroups;

② Points of Neron-Tate height smaller than some fixed constant $\epsilon \geq 0$. All together: Let Γ be a finite rank subgroup of $E(\overline{\mathbb{Q}})$, and for every $\epsilon \geq 0$ define

$$\Gamma_{\epsilon} := \{a + b | a \in \Gamma, \hat{h}(b) \le \epsilon\} \le E(\overline{\mathbb{Q}}).$$

We want to find Σ s such that for some $\epsilon > 0$, $\phi(\Sigma) \cap \Gamma_{\epsilon}$ is finite.

The prototype of such results is the Manin-Mumford conjecture.

The prototype of such results is the Manin-Mumford conjecture.

Theorem (Raynaud 1983)

Let C be a curve over an algebraically closed field of characteristic zero. The curve C, seen in its Jacobian variety J, can only contain a finite number of points that are of finite order in J, unless C = J.

The prototype of such results is the Manin-Mumford conjecture.

Theorem (Raynaud 1983)

Let C be a curve over an algebraically closed field of characteristic zero. The curve C, seen in its Jacobian variety J, can only contain a finite number of points that are of finite order in J, unless C = J.

• Subvarieties of abelian varieties having *large* intersection with the subgroups described before, are *quite special*: Manin-Mumford, Mordell, Bogomolov conjectures.

The prototype of such results is the Manin-Mumford conjecture.

Theorem (Raynaud 1983)

Let C be a curve over an algebraically closed field of characteristic zero. The curve C, seen in its Jacobian variety J, can only contain a finite number of points that are of finite order in J, unless C = J.

- Subvarieties of abelian varieties having *large* intersection with the subgroups described before, are *quite special*: Manin-Mumford, Mordell, Bogomolov conjectures.
- Subvarieties of Shimura varieties having *large* intersection with Σ are *quite special*, whenever Σ consists of CM points or an isogeny class.

Conjecture

Let S be a Shimura variety with $\Sigma \subset S$ be either an isogeny class or the set of CM points, A an abelian variety and $\Gamma \subset A(\overline{\mathbb{Q}})$ a finite rank subgroup. An irreducible subvariety $V \subset S \times A$ containing a dense set of points lying in $\Sigma \times \Gamma_{\epsilon}$ for every $\epsilon > 0$, is weakly special.

Conjecture

Let S be a Shimura variety with $\Sigma \subset S$ be either an isogeny class or the set of CM points, A an abelian variety and $\Gamma \subset A(\overline{\mathbb{Q}})$ a finite rank subgroup. An irreducible subvariety $V \subset S \times A$ containing a dense set of points lying in $\Sigma \times \Gamma_{\epsilon}$ for every $\epsilon > 0$, is weakly special.

By weakly special we mean an irreducible algebraic subvariety of $S \times A$ that can be written as a product $S' \times A'$, where S' is such that its smooth locus is totally geodesic in S and A' is a translate of an algebraic subgroup of A.

・ロト ・ 一下 ・ ・ 三 ト ・ 三

Conjecture

Let S be a Shimura variety with $\Sigma \subset S$ be either an isogeny class or the set of CM points, A an abelian variety and $\Gamma \subset A(\overline{\mathbb{Q}})$ a finite rank subgroup. An irreducible subvariety $V \subset S \times A$ containing a dense set of points lying in $\Sigma \times \Gamma_{\epsilon}$ for every $\epsilon > 0$, is weakly special.

By weakly special we mean an irreducible algebraic subvariety of $S \times A$ that can be written as a product $S' \times A'$, where S' is such that its smooth locus is totally geodesic in S and A' is a translate of an algebraic subgroup of A.

Remark

There is a more general conjecture about unlikely intersection, the *Zilber-Pink conjecture*, for mixed Shimura varieties that indeed implies the above one when $\epsilon = 0$.

イロト イポト イヨト イヨト

Recall that Heegner points on elliptic curves are particular points coming from X(CM), i.e. they correspond to elliptic curves with CM by \mathcal{O}_K for some quadratic imaginary field K (satisfying the Heegner hypothesis).

Recall that Heegner points on elliptic curves are particular points coming from X(CM), i.e. they correspond to elliptic curves with CM by \mathcal{O}_K for some quadratic imaginary field K (satisfying the Heegner hypothesis).

Theorem (Buium-Poonen, 2007)

For some $\epsilon > 0$, the set $\phi(X(CM)) \cap \Gamma_{\epsilon}$ is finite.

イロト イポト イヨト イヨト

Let $x \in X(\overline{\mathbb{Q}})$ be a non-cuspidal point corresponding to a pair (E_x, Ψ_x) . By isogeny class Σ_x we mean the subset of $X(\overline{\mathbb{Q}})$ corresponding to elliptic curves admitting an isogeny to E_x (possibly without respecting the extra structure Ψ_x).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $x \in X(\overline{\mathbb{Q}})$ be a non-cuspidal point corresponding to a pair (E_x, Ψ_x) . By isogeny class Σ_x we mean the subset of $X(\overline{\mathbb{Q}})$ corresponding to elliptic curves admitting an isogeny to E_x (possibly without respecting the extra structure Ψ_x).

Theorem (G.B.)

Let $E/\overline{\mathbb{Q}}$ be an elliptic curve and $\Gamma \subset E(\overline{\mathbb{Q}})$ a finite rank subgroup. Let $\phi: X \to E$ be a non-constant morphism defined over $\overline{\mathbb{Q}}$. For some $\epsilon > 0$, the image of an isogeny class $\Sigma_x \subset X(\overline{\mathbb{Q}})$ intersects Γ_{ϵ} in only finitely many points.

 O-minimality, via the *Pila-Wilkie counting theorem*, is a powerful tool often used to (re)prove results of this kind. Indeed it can be used to prove Manin-Mumford, André-Oort, and many instances of the Zilber-Pink conjecture;

Remarks about O-minimality

- O-minimality, via the *Pila-Wilkie counting theorem*, is a powerful tool often used to (re)prove results of this kind. Indeed it can be used to prove Manin-Mumford, André-Oort, and many instances of the Zilber-Pink conjecture;
- Independently Gabriel Dill proved the version with $\epsilon = 0$ of the theorem, using O-minimality and the Pila-Zannier strategy;

- O-minimality, via the *Pila-Wilkie counting theorem*, is a powerful tool often used to (re)prove results of this kind. Indeed it can be used to prove Manin-Mumford, André-Oort, and many instances of the Zilber-Pink conjecture;
- Independently Gabriel Dill proved the version with $\epsilon = 0$ of the theorem, using O-minimality and the Pila-Zannier strategy;
- Recently Pila and Tsimermann have also obtained a generalization of the $\epsilon = 0$ part of the theorem;

- O-minimality, via the *Pila-Wilkie counting theorem*, is a powerful tool often used to (re)prove results of this kind. Indeed it can be used to prove Manin-Mumford, André-Oort, and many instances of the Zilber-Pink conjecture;
- Independently Gabriel Dill proved the version with $\epsilon = 0$ of the theorem, using O-minimality and the Pila-Zannier strategy;
- Recently Pila and Tsimermann have also obtained a generalization of the $\epsilon = 0$ part of the theorem;
- It seems that the Bogomolov part of the theorem ($\epsilon > 0$) can not be proven using such strategy. Indeed our proof relays on equidistribution results, as in the proof of the Bogomolov conjecture (Ullmo, Zhang 1990)...

• Hecke orbits are equidistributed with respect to the hyperbolic measure on *X*;

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Hecke orbits are equidistributed with respect to the hyperbolic measure on *X*;
- The corresponding Galois orbits on the abelian variety side equidistribute to the Haar measure on $E(\mathbb{C})$;

- Hecke orbits are equidistributed with respect to the hyperbolic measure on *X*;
- The corresponding Galois orbits on the abelian variety side equidistribute to the Haar measure on $E(\mathbb{C})$;
- The two measures are "incomparable".

• On X/\mathbb{C} we have the hyperbolic measure μ_X : it is the measure whose pullback to \mathbb{H} equals a multiple of the hyperbolic measure $y^{-2}dxdy$;

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- On X/C we have the hyperbolic measure μ_X: it is the measure whose pullback to ℍ equals a multiple of the hyperbolic measure y⁻²dxdy;
- On E/\mathbb{C} we have the Haar measure μ_E , since $E(\mathbb{C})$ is a locally compact topological group;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- On X/C we have the hyperbolic measure μ_X: it is the measure whose pullback to H equals a multiple of the hyperbolic measure y⁻²dxdy;
- On E/\mathbb{C} we have the Haar measure μ_E , since $E(\mathbb{C})$ is a locally compact topological group;

For example for every continuous real function f over ${\boldsymbol E}$ we have

$$\int_E f(x)d\mu_E(x) = \lim_{n \to \infty} \frac{1}{n^2} \sum_{p \in E[n]} f(p).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- On X/C we have the hyperbolic measure μ_X: it is the measure whose pullback to H equals a multiple of the hyperbolic measure y⁻²dxdy;
- On E/\mathbb{C} we have the Haar measure μ_E , since $E(\mathbb{C})$ is a locally compact topological group;

For example for every continuous real function f over ${\boldsymbol E}$ we have

$$\int_E f(x)d\mu_E(x) = \lim_{n \to \infty} \frac{1}{n^2} \sum_{p \in E[n]} f(p).$$

• Given a point p we denote by δ_p the Dirac measure supported on p.

イロト イポト イヨト イヨト 二日

• We may assume X, E, ϕ, x are all defined over a number field K and that Γ is contained in the division hull of E(K);

∃ >

- We may assume X, E, ϕ, x are all defined over a number field K and that Γ is contained in the division hull of E(K);
- Thanks to the result of Buium-Poonen, we may suppose that x corresponds to a non-CM elliptic curve E_x .

- We may assume X, E, ϕ, x are all defined over a number field K and that Γ is contained in the division hull of E(K);
- Thanks to the result of Buium-Poonen, we may suppose that x corresponds to a non-CM elliptic curve E_x .

Heading for a contradiction we may assume that that, for every $\epsilon > 0$, the set $\Sigma_x \times \Gamma_{\epsilon}$ is dense in the graph of ϕ . Therefore we may find a generic infinite sequence of points $(x_n, a_n)_n$ such that $x_n \in \Sigma_x$, $\phi(x_n) = a_n$ and $a_n \in \Gamma_{\epsilon_i}$ where $\epsilon_i \to 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sequence of measures on \boldsymbol{X}

Consider the sequence of measures on $X(\mathbb{C})$

$$\Delta(x_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).x_n|} \sum_{p \in \operatorname{Gal}(\overline{K}/K).x_n} \delta_p.$$

06/09/2019 14 / 17

(日) (周) (日) (日) (日)

Sequence of measures on \boldsymbol{X}

Consider the sequence of measures on $X(\mathbb{C})$

$$\Delta(x_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).x_n|} \sum_{p \in \operatorname{Gal}(\overline{K}/K).x_n} \delta_p.$$

Since x is non-CM, Serre's open image implies that x is a Galois generic point, i.e. the image of the Galois representation attached to the Tate-module of E_x is open in $GL_2(\mathbb{A}_f)$.

Consider the sequence of measures on $X(\mathbb{C})$

$$\Delta(x_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).x_n|} \sum_{p \in \operatorname{Gal}(\overline{K}/K).x_n} \delta_p.$$

Since x is non-CM, Serre's open image implies that x is a *Galois generic* point, i.e. the image of the Galois representation attached to the Tate-module of E_x is open in $GL_2(\mathbb{A}_f)$.

In particular we can translate a result of Clozel-Ullmo about the equidistribution of Hecke points on Shimura varieties, in a equidistribution result about the Galois conjugates of x:

$$\Delta(x_n) \to \mu_X$$
, as $n \to +\infty$.

The degree of the field of definitions of x_n and a_n over K has to go to infinity with n.

∃ >

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The degree of the field of definitions of x_n and a_n over K has to go to infinity with n. Indeed

 $[K(x_n):K] \le \deg(\phi)[K(a_n):K],$

and $[K(x_n):K]$ tends to infinity since the x_n s lie in an infinite isogeny class and the boundedness of such degree would prevent the equidistribution of the $\Delta(x_n)$ s.

イロト イポト イヨト イヨト

The degree of the field of definitions of x_n and a_n over K has to go to infinity with n. Indeed

 $[K(x_n):K] \le \deg(\phi)[K(a_n):K],$

and $[K(x_n):K]$ tends to infinity since the x_n s lie in an infinite isogeny class and the boundedness of such degree would prevent the equidistribution of the $\Delta(x_n)$ s.

The last property can be also seen using the Masser-Wüstholz Isogeny Theorem.

イロト 不得下 イヨト イヨト 二日

1 $\Delta(x_n)$ weakly converges to μ_X ;

∃ >

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- $\Delta(x_n)$ weakly converges to μ_X ;
- **2** Consider the following measures on $E(\mathbb{C})$:

$$\Delta(a_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).a_n|} \sum_{q \in \operatorname{Gal}(\overline{K}/K).a_n} \delta_q$$

∃ >

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- **1** $\Delta(x_n)$ weakly converges to μ_X ;
- **2** Consider the following measures on $E(\mathbb{C})$:

$$\Delta(a_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).a_n|} \sum_{q \in \operatorname{Gal}(\overline{K}/K).a_n} \delta_q$$

It follows that $\Delta(a_n)$ weakly converge to $\phi_*(\mu_X)$.

- **1** $\Delta(x_n)$ weakly converges to μ_X ;
- **2** Consider the following measures on $E(\mathbb{C})$:

$$\Delta(a_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).a_n|} \sum_{q \in \operatorname{Gal}(\overline{K}/K).a_n} \delta_q$$

It follows that $\Delta(a_n)$ weakly converge to $\phi_*(\mu_X)$.

Since each a_n lies in a Γ_{ϵ_i} , where $\epsilon_i \to 0$, Zhang proved that $\Delta(a_n)$ weakly converges to μ_E .

- $\Delta(x_n)$ weakly converges to μ_X ;
- **2** Consider the following measures on $E(\mathbb{C})$:

$$\Delta(a_n) := \frac{1}{|\operatorname{Gal}(\overline{K}/K).a_n|} \sum_{q \in \operatorname{Gal}(\overline{K}/K).a_n} \delta_q$$

It follows that $\Delta(a_n)$ weakly converge to $\phi_*(\mu_X)$.

Since each a_n lies in a Γ_{ϵ_i} , where $\epsilon_i \to 0$, Zhang proved that $\Delta(a_n)$ weakly converges to μ_E .

But this violates the condition that the two measures are incomparable.

THANKS FOR YOUR ATTENTION!

G. Baldi

Independence of points

06/09/2019 17 / 17

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >